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Inspired by a recent hyperbolic regularization of Burnett’s hydrodynamic equations [A. Bobylev, J. Stat.
Phys. 124, 371 (2006)], we introduce a method to derive hyperbolic equations of linear hydrodynamics to any
desired accuracy in Knudsen number. The approach is based on a dynamic invariance principle which derives
exact constitutive relations for the stress tensor and heat flux, and a transformation which renders the exact
equations of hydrodynamics hyperbolic and stable. The method is described in detail for a simple kinetic

model—a 13 moment Grad system.
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I. INTRODUCTION

Derivation of hydrodynamics from a microscopic descrip-
tion is the classical problem of physical kinetics. The
Chapman-Enskog (CE) method [1] derives the solution from
the Boltzmann equation in a form of a series in powers of
Knudsen number e, where ¢ is a ratio between the mean free
path of a particle and the scale of variations of hydrodynamic
fields. The Chapman-Enskog solution leads to a formal ex-
pansion of stress tensor and of heat flux vector in balance
equations for density, momentum, and energy. Retaining the
first order term (&) in the latter expansions, we come to the
Navier-Stokes equations, while next-order corrections are
known as the Burnett [2] (¢?) and the super-Burnett (&%)
corrections [1]. It has long been conjectured that the inclu-
sion of higher-order terms in the constitutive relations for the
stress and heat flux may improve the predictive capabilities
of hydrodynamics formulations in the continuum-transition
regime where Navier-Stokes equations fail.

However, as it was first demonstrated by Bobylev for
Maxwell’s molecules [3], even in the simplest case (one-
dimensional linear deviation from global equilibrium), the
Burnett and the super-Burnett hydrodynamics violate the ba-
sic physics behind the Boltzmann equation. Namely, suffi-
ciently short acoustic waves are increasing with time instead
of decaying. Bobylev’s instability has been also studied by
Uribe et al. [4] for hard sphere molecules. This instability
contradicts the H theorem, since all near-equilibrium pertur-
bations must decay. This creates difficulties for an extension
of hydrodynamics, as derived from a microscopic descrip-
tion, into a highly nonequilibrium domain where the Navier-
Stokes approximation is inapplicable. For example, higher-
order systems of hydrodynamic equations afforded a better
description in certain situations such as shock structures on
coarse grids, but are prone to small wavelength instabilities
when grids are refined. Successes and drawbacks of the Bur-
nett computations and a family of extended Burnett equa-
tions aimed at achieving entropy-consistent behavior of the
equations have been recently summarized in [5].

The failure of the CE expansion does not lie in the
method itself, but in its truncation to lower order levels. This
question was studied in some detail for a class of simple
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kinetic models—Grad’s moment systems [6]—in Refs.
[7-12]. In these works, the Chapman-Enskog expansion was
summed up exactly which revealed stability of exact hydro-
dynamics in contrast to its finite-order approximations. Al-
ternative ways of approximating the Chapman-Enskog solu-
tion have been also suggested.

Very recently, Bobylev suggested a different viewpoint on
the problem of Burnett’s hydrodynamics [13]. Namely, vio-
lation of hyperbolicity can be seen as a source of instability.
We remind that Boltzmann’s and Grad’s equations are hyper-
bolic and stable due to corresponding H theorems. However,
the Burnett hydrodynamics is not hyperbolic which leads to
no H theorem. Bobylev [13] suggested to stipulate hyper-
bolization of Burnett’s equations which can also be consid-
ered as a change of variables. In this way hyperbolically
regularized Burnett’s equations admit the H theorem (in the
linear case, at least) and stability is restored.

The aim of this paper is to study the issue of hyperbolicity
of higher-order hydrodynamics in the case where the
Chapman-Enskog solution can be found exactly. As a start-
ing point, we consider the Grad’s moment system, linearized
at the equilibrium, and assuming unidirectional flow condi-
tions (the 1D13M system, according to [7]). While simple
enough, this model is nontrivial for three reasons: (i) appli-
cation of the Chapman-Enskog method leads to a rather in-
volved nonlinear recurrent relations for the coefficients of the
expansion; (ii) the Burnett approximation derived from the
Grad’s moment system is identical to the one derived from
the Boltzmann equation for Maxwell’s molecules and thus
violates hyperbolicity and exhibits Bobylev’s instability [3];
(iii) even though the exact hydrodynamics can be derived
following the lines of Refs. [7-12], and is stable, the ques-
tion remains whether or not this exact hydrodynamics is
manifestly hyperbolic.

The paper is organized as follows: In Sec. II, we derive
exact hydrodynamics from the linearized 1D13M Grad’s sys-
tem. Derivation closely follows [12], and is based on appli-
cation of a dynamic invariance principle which is equivalent
to exact summation of the Chapman-Enskog expansion. A
critical value of the Knudsen number is found beyond which
a closed system of equations for the locally conserved fields
ceases to exist. In Sec. III we find a class of transformations
through which exact equations of hydrodynamics can be put
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in a hyperbolic form, thereby answering in affirmative the
above question. We also analyze how such transformations
affect the dissipative nature of the equations. In Sec. IV, we
analyze and compare with conventional and earlier approxi-
mate solutions provided by (i) the Newton iteration method
(Appendix A) and (ii) Bobylev’s hyperbolic regularization of
Burnett’s equations (Appendix B) which turns out to be a
special case of a more general result presented here. Finally,
conclusions are provided in Sec. V.

II. HYDRODYNAMICS FROM THE
LINEARIZED GRAD SYSTEM

A. Chapman-Enskog method and Bobylev’s instability
of Burnett’s hydrodynamics

Point of departure is the linearized Grad’s 13-moment
system in one spatial variable x:

oT 2(3’ 20
== 0U— 0,4,
t 3 3 q
8
0,0= E&XM—E q——0,
5 2
&,qz—g&xT—&xa'—gq. (1)

Here p(x,1), u(x,), and T(x,t) are the reduced deviations of
density, average velocity, and temperature from their equilib-
rium values, respectively, and o(x,7) and g(x,?) are the re-
duced xx component of the nonequilibrium stress tensor and
heat flux, respectively. Moreover, € >0 has a meaning of the
Knudsen number. The latter is given by the ratio between the
mean free path N and a characteristic dimension of the sys-
tem L and is the smallness parameter in the Chapman-
Enskog method [1]. The magnitude of the Knudsen number
determines the appropriate gas dynamic regime [14]. In a
sequel, we use rescaled variables ' =¢ef and x’ =ex and omit
the prime to simplify notation.

The system (1) provides the time evolution equations for
a set of hydrodynamic (locally conserved) fields [p,u,T]
coupled to the nonhydrodynamic fields o and g. The goal is
to reduce the number of equations in Eq. (1) and to arrive at
a closed system of three equations for the hydrodynamic
fields only. Thanks to linearity of the system (1) it proves
convenient to turn into the reciprocal space, and seek for
solutions of the form {={, exp(wt+ikx), where { is a generic
function p,u,T,o,q, and where k is a real valued wave num-
ber.

Application of the Chapman-Enskog (CE) method to the
reduction of the system (1) results in the following series
expansion of the nonhydrodynamic variables into the powers
of k:

PHYSICAL REVIEW E 75, 051204 (2007)

oo

o= O-I(cn)’ q=> 41(:’)’ (2)

n=0 n=0

where the coefficients 0']((") and qi”) are of order 0',((")~k”“,
ql(cn) ~ k"', and are obtained from a recurrence procedure:

n-1
8
0',({”) =— 2 (95'")0';("_1_'") + —ikqi"_l) ,
m=0 15
n—1
ql((n) - _ 2 &gm)q]((n—l—m) + l'kO'](cn_l) i (3)
m=0

and where the CE operators (?Em) act on the hydrodynamic
fields as follows:

(m) —ikuy,, m=0
o= 0 m=1’

0(m) _ _ik(pk+Tk)9 m=0
e —ika"V,  m=1’

amT, = . (4)

It can be proven that functions o and ¢, have the following
structure, for all n=0,1,...:

o = a, (- K¥)'ikuy
0_;{211+1) — bn(_ k2)n+lpk+ Cn(_ k2)”“Tk,
g = x,(= k) "ikpg + v, (= K2)kT,,

q§{2n+l) — Zn(_ k2)11+llxlk, (5)

where a,,, ... ,z, are numerical coefficients to be determined.
Note the altering structure of expansion coefficients of odd
and even orders. Substituting Eq. (5) into Egs. (3) and (4),
the CE method casts into recurrence equations in terms of
the coefficients a,, ...,z,:

n n
2 2 8
Apy1 = bn + gcn + gz Cp-mZm-1 1 2 Apemlm — Ezm
m=1 m=0
n n
2 8
bn+l =dpet 2 an—mbm + 32 Crp—mXm — Exn+l7
m=0 m=0
n n
2 8
Cpp1 =0y t 2 AymCm + 5 2 Cn-m¥Ym — Gynﬂ ’
m=0 m=0

n ) n
Xp+1 =Zp t 2 Zn—mbm—l + 52 Yn-mXm — bn’

m=1 m=0
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m=1 m=0
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(6)

System (6) is solved recurrently subject to the initial condi-
tions,

ag=—

p=—". (7)

The initial conditions are obtained by evaluating the func-
tions o, and g, up to the Burnett order [see Eq. (15) below]
and identifying the coefficients ag, xy, and y, from the
Navier-Stokes approximation and the remaining coefficients
by, co, and z;, from the Burnett correction. Equation (6) de-
fines six functions,

A(k) =2 a, (=KD", ... Z(k) = 2, z,(- k). (8)
n=0 n=0

Thus the CE solution amounts to finding functions A, ...,Z
[Eq. (8)]. Note that by the nature of the CE recurrence pro-
cedure, functions A4, ... ,Z [Eq. (8)] are real-valued functions.
Knowing A, ...,Z [Eq. (8)], we can express the nonequilib-
rium stress tensor and heat flux as

0 = ikA(k)uy — K*B(k) py — kK> C(k) T, 9)

qi = ikX(k) py + ikY (k)T — K*Z(k)uy. (10)

Upon substituting these expressions into the Fourier-
transformed balance equations (1), we obtain the closed sys-
tem of hydrodynamic equations which is conveniently writ-
ten in a vector form,

dx =MXx, (11)

where x= (py,uy,T}), and the matrix M has the form

0 — ik 0
| -k - k*B) k*A —ik(1 - k*C)
- 2 2 2

kX - Zik(1 -k*2) =Ky

3 3 3

(12)

With this, we find the dispersion relation for the hydrody-
namic modes w(k) by solving the characteristic equation,

det(M — ol) =0, (13)

with I the unit matrix.

The standard application of the CE procedure is to ap-
proximate functions A,...,Z by polynomials with coeffi-
cients found from the recurrence procedure (6). The first
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FIG. 1. Dispersion relation. Acoustic mode Re(w,.) for Navier-
Stokes and Burnett hydrodynamics.

nonvanishing contribution is the Newton-Fourier constitutive
relations,

4 15
o =— S ik 0 =- - T (14)

which leads to the Navier-Stokes-Fourier hydrodynamic
equations. Computing the coefficients cr,((l) and q,(cl), we arrive

at the Burnett level:

4. 4, 2,
O'k=—§lkuk+§k pk—gk Tk’

5 7,
qu—Zlka'FZk Uy. (15)

The Burnett approximation (15) coincides with that obtained
by Bobylev [3] from the Boltzmann equation for Maxwell’s
molecules. Unlike the Navier-Stokes-Fourier approximation,
the Burnett constitutive relations (15) show instability of the
acoustic mode, see Fig. 1.

Thus the difficulty of the CE method consists in the way
the functions A, ...,Z are approximated, the standard poly-
nomial approximations lead to unstable hydrodynamic equa-
tions. We shall now derive closed-form equations for these
functions which amounts to summing up the CE series ex-
actly.

B. Invariance equations

Summation of the CE series for the functions A, ... ,Z can
be done directly from the recurrence relations (6) following
the lines of Ref. [8]. Alternatively but completely equiva-
lently, one can make use of the dynamic invariance principle
(DIP) [7]. Here, the set of nonhydrodynamic moments {c, g}
is still thought in the form (9) and (10), but the method
makes no assumption about the power-series representation
of the functions A, ..., Z. The time derivative of {c, g} can be
computed in two different ways. On the one hand, substitut-
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ing Egs. (9) and (10) into the moment system (1), we find

4 8
G0 == Sikuy = <ikq(X.Y.Z.k) = o(A.B.C.K).

5 2
dq=- Eika —iko(A,B,C,k) — §Q(X’ Y.Z k).

On the other hand, the time derivative of {o,g} can be com-
puted due to the closed hydrodynamic equations by chain
rule:

Jdo Jdo do
at0'= —ﬂ,uk+ —ﬁtpk + —(7,Tk,

(16a)

&Mk 0pk aTk

9q 9q dq
dqg=—"0u,+—3ad.p,+—3T,. 16b
) iy Uk P 1Pk T, (s ( )

Here, the derivatives du; and 4,7, are evaluated self-
consistently using the functions (9) and (10) in the right hand
side of Eq. (1). The DIP states that the two time derivatives
coincide, since the set {o, g} has to solve both the full Grad
system and the reduced system. This requirement implies a
closed set of equations, here referred as invariance equations
(IE), relating the six functions A(k), ... ,Z(k):

4 of o 8Z 2C 2,
—-——A-kK|A“+B-—+—|+-k'CZ=0,
3 15 3 3

8 2 2,
EX+B—A+kAB+§k CX=0,

8 2 2,
—Y+C-A+k’AC+ -k°CY=0,
15 3
2 ) 2 2,
A+—Z+kZA-X--Y+—-kYZ=0,
3 3 3
2 2 2 4 2.,
kB—gX—kZ+kZB—§k YX=0,

B %Y+k2(C—Z) +k*zC - gkzyzzo. (17)
2 3 3

The same equations can be derived upon summation of the

CE expansion. Equations (17) are a convenient starting point

for evaluation of exact hydrodynamics. For k=0 one recov-

ers the initial conditions (7).

C. Exact hydrodynamic solutions

The dispersion relation w(k) was found by simultaneously
solving numerically the invariance equations (17) and the
characteristic equation (13). The resulting hydrodynamic
spectrum consist of two modes, the acoustic mode w,(k),
represented by two complex-conjugated roots of Eq. (13),
and the real-valued diffusive heat mode wg(k), cf. Fig. 2.

Among the many sets of solutions {A(k), ...,Z(k)} to the
system (17), the relevant ones are continuous functions with
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FIG. 2. (Color online) Dispersion relation for the linearized
ID13M Grad system (1). The unique solution of hydrodynamical
modes obtained from Eq. (13) with Eq. (17) coincides with the real
parts of the modes of the original Grad system (the plot also shows
when pairs of conjugate complex roots appear), the solution of the
original system (1) features five w’s, while the exact solution of Eq.
(13) with Eq. (17) has three ’s for each k and degenerated over the
hydrodynamic branches at k=k..

the asymptotics: lim_,gwpy,=0. Remarkably, we find that
the solution with this asymptotics is unique, and represented
by a pair of complex conjugated sets, [S,S"], shown in Figs.
3 and 4. Note that a qualitative change of dynamics arises
when the diffusive mode couples with one of the two non-
hydrodynamical modes of Grad’s system at a critical wave
number k.=~ 0.3023, which is the value where also the New-
ton method diverges, cf. Appendix A. By the CE perspective,
the hydrodynamics of the diffusive mode stops at k.., since,
after that point, it becomes a complex-valued function
coupled with the conjugated nonhydrodynamic mode, see

3.5> T T T T
—1—A
OB
N B X
25} AE z |
4 : e
E 15t o e 1
1» ,/,) .
7 /\:\ ]
o 1 1
0 0.2 0.4 06 0.8 1

k

FIG. 3. (Color online) Imaginary parts of coefficients A to Z
solving Eq. (17). Shown is the unique solution leading to hydrody-
namic branches, cf. Fig. 2, which is symmetric about the real axis.
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Re(A-2)

k

FIG. 4. (Color online) Real parts of complex-valued functions
A,...,Z solving Eq. (17). It is clearly visible that the solution
matches the initial condition (7).

Fig. 2. Essentially, for k=k,., the CE method does not rec-
ognize any longer the resulting diffusive branch as an exten-
sion of a hydrodynamic branch. Also, the set of solutions
[S,S], real valued for k=k,, continues upon a complex
manifold, cf. Fig. 3. We notice that the occurrence of a pair
of complex conjugated sets of solution is very plausible due
to symmetry reasons: inserting S into the dispersion relation,
we obtain a pair of complex conjugated acoustic modes
[0,(S,k), @, (S,k)] plus one of the complex modes result-
ing from the extension of the diffusive branch for k=k;
whereas, through S*, we obtain, symmetrically, the two latter
conjugated modes, plus one of the conjugated acoustic
modes.

As a further evidence of this close coupling, we also no-
tice the occurrence of an intersection between the real parts
of the hydrodynamical modes Re(w,,) and Re(wg;) after the
critical point, at k=kq,p =~ 0.383. Therefore the message ex-
tracted from the study of Grad’s system (1) is that the set of
hydrodynamic equations for [p,u,T] provides, as expected,
stable solutions, when taking into account all the orders of
CE expansion—which corresponds to solving the system of
invariance equations (17). And, there is no closed set of hy-
drodynamic equations after k., even though the acoustic
mode extends smoothly beyond k., as is visible in Fig. 2.

Thus the exact hydrodynamics as derived by the summa-
tion of the CE expansion (or, equivalently, from the invari-
ance equations) extends up to a finite critical value k.. No
stability violation occurs, unlike in the finite-order trunca-
tions thereof. While we have evaluated the functions A, ...,Z
numerically, two questions remained open: (i) Is the (stable)
exact hydrodynamics also hyperbolic? (ii) If so, how to re-
tain hyperbolicity in the approximations? In the next section
we shall answer the first of these questions.

III. HYPERBOLIC TRANSFORMATION
FOR EXACT HYDRODYNAMICS

Equation (1) for the Fourier component vector X
= (pg,uy, Ty) reads dx=Mx with M from Eq. (12). By ex-
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plicitly re-introducing the Knudsen number &, i.e., by replac-
ing k by ke in M and further distinguishing between the real
and imaginary matrix elements in M, we can write

dx =[Re(M) — i Im(M)]x,

©

Re(M) = D, (= 1)"R™We2*! = eRO — &3RW + 0(&Y),
n=0

(18)

[’

Im(M) = 2, (= 1) TWe2 =1 — 211 4 £41?@ — 0(&%),
n=0

(19)

rearranged such that the Knudsen number expansion coeffi-
cients become visible. We find that the operators Re(M) (real
part) and Im(M) (imaginary part) involve the following real-
valued operators (for all n=0, i.e., with the convention a_;
=c_;=z_; =1 and Kronecker symbol §),

0 S0 0
I(n) — k2n+l b"—l 0 Cn-1 ,
2
0 gzn—l 0
0 0 0
R®™ = j2n+2 an 20 (20)

= 0 =
3xn 3yn

Equations of hydrodynamics (18) are hyperbolic and
stable provided that we can find a transformation of hydro-
dynamic fields such that (i) Re(M) and Im(M) are both real
and symmetric, and (ii) Re(M) has negative semidefinite ei-
genvalues. Therefore we seek a transformation z=Tx which
produces a symmetric matrix M’=TMT~! and we wish to
see if Re(M')=Re(TMT"!) is negative semidefinite. We
consider the equations of exact hydrodynamics, i.e., Egs.
(18) provided that functions A, ...,Z [Eq. (20)] are solutions
to the invariance equations (17). After a few algebra which
we do not recapitulate here, we obtain a particular transfor-
mation matrix T which solves the problem. It is a member of
a whole class of effectively equivalent transformations, and
can be written as

{ T,, 0 T,r
T=—1/ 0 T,. 0 |, (21)

“\ 0 0 Trr
with the nonvanishing components

Tiu
B3x+2Y[[Z]]

Tpp=
v

T, = VXI[3B - 2Z[[C]] - 2C]]+ 2¥[[BIII[Z]],
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_ 3l
T \Bx+2v[[Z]]
Trr=\3[[CTIYI[BT] - [[C11X), (22)
where we have introduced the following symbolic notation:
[[+1]=1-(ke)*. (23)

The transformation T [Eq. (21)] symmetrizes M and renders
the system hyperbolic, as can be verified by straightforward
computation of M’ from Egs. (21), (25b). We further notice
that T contains only even powers of (ke) because the same is
true for the coefficients A—Z.

Next we calculate the eigenvalues N;,; of
Re(M’)—containing transport coefficients—to obtain a re-
markably simple result:

2
M=0, N\, =k%A, )\3=§k28Y. (24)

From the analysis of the previous section, it follows that the
nontrivial eigenvalues (24) are negative semidefinite for all
ke (see Fig. 4 which displays the exact numerical solutions
for A and Y). Hence the equation describing hyperbolic hy-
drodynamics (also hyperbolic up to an arbitrarily selected
order ", a feature to be used in the next section) attains the
form

dz=M'z, (25a)

M’ = TMT"! (25b)

for the vector z={p,,ii;,7;,}=Tx of transformed hydrody-
namic variables, and where M’ is symmetric and has semi-
negative eigenvalues. To summarize,

hyperbolicity: (M')"=M’, (26a)
o Tr[Re(M')] =0,

dissipativity: , (26b)
det[Re(M')] = 0.

Equation (25) with Egs. (21) and (12) satisfying Eq. (26)
is the main result of this paper. The occurrence of negative
eigenvalues in the exact solutions, together with the exis-
tence of a transformation T which makes the equations hy-
perbolic, proves that exact hydrodynamics (1), without ap-
proximations, is stable. In the remainder of this paper we
shall make use of the hyperbolicity of exact hydrodynamics
in order to establish approximate hydrodynamic equations
which retain this property.

IV. LOWER ORDER HYPERBOLIC
AND STABLE HYDRODYNAMICS

A. Approximations on the hyperbolic equations

In applications, one is interested in using truncated hydro-
dynamic equations by taking into account only lower orders
of the Knudsen number €. In this case, the functions A, ...,Z
are replaced by their lower-order approximations, and they
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can be generally written—as shown already in Eq. (8)—as
polynomials truncated to an arbitrary order n. Their coeffi-
cients are usually derived through the CE recurrence equa-
tions, as outlined above. With the exact numerical solution at
hand, we can also find, at any given order of approximation,
the optimal interpolating functions A, ... ,Z solving Eq. (17),
a method we wish to recommend, and which has been
worked out in Table I. Exact hydrodynamics, as described by
Grad’s system (1), terminates at k.. In this regime we can
perform a Taylor expansion, up to any order n, upon the
elements of all the three matrices T, M, and T, Thus the
approximations are done on the manifestly hyperbolic equa-
tion (25) in such a way as to retain hyperbolicity and stability
in each order of approximation. It is worthwhile noticing that
the eigenvalues, upon approximating Eq. (25) to a polyno-
mial order n, transform in a canonical manner:

A=0, A= kzs(ao + 2 am(ke)’”),

m=1

2 n
NG §k28<yo + > ym<ke>'"), 27)
m=1

and, depending upon the polynomial coefficients, and in par-
ticular depending on the sign of the highest order coefficients
a,, y,.» the eigenvalues \, 3 diverge to =% for ke —, but
stay negative for k=k,, if we use coefficients according to
the method summarized in Table I. We shall now consider a
few examples of the suggested procedure.

B. Euler and Navier-Stokes equations

For the zeroth-order term, Im(M)=1¥ (Euler), the trans-
formation is, according to Eq. (22), given by a diagonal ma-
trix with entries T,,=T,,=1 and Tyy= V3/2, all eigenvalues
are identically zero. The first order term, linear in the Knud-
sen number (Navier-Stokes) is obviously stable as well; all
eigenvalues are negative semidefinite since ay=-4/3 and
yo=—15/4 are both negative.

C. Hyperbolic regularization for the Burnett level

The Burnett equations are unstable without regularization.
For this level of description, second order in the Knudsen
number &, with Im(M)=I©—-&?IV), upon inserting the re-
quired exact solutions at vanishing wave number, a, ... ,Zg
from Eq. (17), cf. Table I, into Egs. (21) and (22), the trans-
formation matrix achieving a symmetric Im(M’) reads

2
1+ 5(/{8)2 0 0

T= 0 1 0 . (28)

This transformation coincides with the one derived by Bo-
bylev’s hyperbolic regularization method [13], specified for
the present model (an alternate derivation which follows
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TABLE I. Polynomial coefficients introduced in Eq. (8) obtained from the exact numerical solution, cf.
Fig. 4, by requiring that deviations between exact and polynomial series at a given order of the method (first
column) stay below 1% (i.e., would be invisible in the plot). We used the symmetrized functions A(k)+A(
—k) over the whole real axes for k when performing the fits in order to enforce correct symmetry. This
criterion corresponds to a regularization procedure which produces stable results up to the limit (ke)
= (ke),=0.3023, as is easily verified, and leads to a recommended range of (high precision) applicability of
the method (second column). For convenience we list faculty-rescaled series coefficients. These coefficients
are essentially the prefactors for higher order correction terms in hydrodynamic equations and can be used to
study the intermediate Knudsen number regime 0< ke <(ke).. As described in the text, with a suitable
transformation matrix T these choices lead to very convenient hyperbolic differential equations for the
hydrodynamic fields x=(p,u,T).

Method apply at n a,/n! b,/n! c,/n! X,/n! y/n! z,/n!
0 ke =0.03 0 —4/3 —4/3 2/3 0 -15/4 -7/4
1 ke=0.17 0 —4/3 —4/3 2/3 0 -15/4 -7/4
1 1.132 2.536 -3.735 -0.716 5.873 9.953
2 ke=0.25 0 —4/3 —4/3 2/3 0 -15/4 -7/4
1 0.706 1.156 -2.500 0.309 4.652 7.053
2 -1.304 -4.095 3.720 3.030 -3.741 -8.902
3 ke =0.28 0 -4/3 -4/3 2/3 0 -15/4 =7/4
1 1.104 3.042 —4.055 -1.123 5.903 9.718
2 0.329 3.669 -2.678 -2.861 1.398 2.023
3 0.648 3.083 -2.540 -2.340 2.040 4.333
. . . . . r
closely Ref. [13] is given in Appendix B). Notice that up to
the Burnett level only the polynomial coefficients at vanish- 0 1 0
ing wave number, listed in the first row of Table I, enter the 2
transformation T, which can be indirectly also inferred from ;. 1 0 .
. M’ = — ikS 3
the eigenvalues, cf. Eq. (27).
2
0 \/i 0
3
D. Beyond the Burnett level L \
In Table I, we provide not only coefficients, but also 0 M 0
ranges of applicability for the given coefficients of A—Z 15
which can be used if we extend the procedure to higher or- 2(5+x) 65 — 24x,
der. The optimal coefficients are provided by the least +(ke)?| ——— 0 - >
. . 15 606
squares fit of the numerical data for exact hydrodynamics,
see Table I. Within the given ranges, the eigenvalues of 0 05 — 24x, 0
Re(M’) are negative semidefinite, i.e., the spectrum of the 6016
acoustic mode w,.(k) of the corresponding hyperbolic hydro- ( /
dynamic system is then stable for all wavelengths. 0 0 0
4
0 = 0
— K& 3
E. Application: Hyperbolic regularization
for the super-Burnett level 0 0 §
2
Finally, in order to present explicit illustration of the ap- - 3
proximation strategy presented in Sec. III, we present the 0 0 \/5
. . . — X1
equations on the next, super-Burnett, level, which takes into 3
3 .
account terms up to the'order (ke)”. The equations of change + (ke)? 0 a 0 >, (30)
for the transformed variables z read )
2
\/;‘1 0
dz=M'z, (29) /
with a symmetric M’, and transformation
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[es N
- O
o O

2(5-x)) 0 2x;
15 5
+ (ke)? 0 0 0 ,
145 + 24x,
0 0 -
4076

(31)

where third order terms are not present because T is sym-
metric in k. The Burnett level (28), where x; disappears, is
immediately recovered from Eq. (31). The hydrodynamic
variables are restored using x=T"!z, with the inverse trans-
formation (suitable at the super-Burnett level), which, due to
our (arbitrarly) chosen normalization factor T, in Eq. (21)
only slightly differs from T:

1 0 0
0 1 0

T =
2
0 0 \/j
3
—2(5_x1) 0 ﬁ\/g
15 5 V3

— (ke)? 0 0 0
145 + 24x,
0 0 -
606
(32)
To complete the “simulation algorithm” using Eqgs.

(29)-(32), we need numerical values for x; and y;, and an
initial condition for x, or z. One solves the hyperbolically
stable system for z, and finally calculate x via T~!. Suitable
values for the coefficients are those given in Table I for
method 1: y;=5.873 and x;=-0.716, because higher order
coefficients such as x, do not enter. The equations of this
section should allow us to study the regime 0=ke<<0.17
very accurately. For the remaining regime, 0.17 <ke <(ke),,
the presented equations are also stable and hyperbolic, but
not as accurate. They are, by definition, more accurate com-
pared with the ones obtained using the recursion method.
The equations offered in this section serve as an example on
how to use our more general result, Eq. (21).

V. CONCLUSIONS

In this paper, we have considered derivation of hydrody-
namics for a simple model (1) for which—as we have
demonstrated—all details can be explicitly studied. The main
finding is that the exact hydrodynamic equations (summation
of the Chapman-Enskog expansion to all orders) are mani-
festly hyperbolic and stable. To the best of our knowledge,
this is the first complete answer of the kind. We have also
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suggested a way of approximating the higher order hydrody-
namic equations using accurate numerical solution of the in-
variance equations and expansion of the transformation
which renders the system hyperbolic. The study supports the
recent suggestion of Bobylev on the hyperbolic regulariza-
tion of Burnett’s approximation, and reduces to the latter in a
special case.

We conclude this paper with a few comments on the pos-
sible extensions of the present approach. (i) The technique of
deriving exact hydrodynamics and/or hyperbolic approxima-
tions thereof can be readily applied to linearized Grad’s sys-
tems with a larger number of moments. In particular, we
were able to extend the present derivation to the three-
dimensional 13 moment system, the results qualitatively
agree with the one-dimensional case considered above and
will be reported separately. (ii) It is also possible to apply the
present techniques to derive exact hydrodynamics from the
dynamically corrected Grad’s systems, first introduced in
[15] and studied in some detail in [16]. The latter equations
have arguably better properties than the Grad’s equations,
especially in the moderate Knudsen number regime where
the linearized systems become relevant to study of microf-
lows. (iii) In this paper, we were addresing the boundary
conditions for neither the Grad’s systems nor for the higher
order hydrodynamic equations. As is well known, this ques-
tion remains essentially open for both. Therefore a different
and intriguing field of applications of the present technique is
the recently established lattice Boltzmann hierarchy (LBH)
[17-25]. Although the primitive variables in the LBH are
populations of carefully chosen discrete velocities, the LBH
equations can be cast into a form of moment systems similar
to Grad’s equations. The crucial advantage of the LBH above
Grad’s systems is that the former is equipped with pertinent
boundary conditions derived directly from the Maxwell-
Boltzmann theory [19]. Recently, it has been demonstrated,
both numerically and analytically, that the LBH is capable of
capturing such phenomena as slip and nonlinear Knudsen
layers [24,25]. The present techniques can be applied for
reducing higher order lattice Boltzmann models with advan-
tage for the numerics. However, this goes beyond the scope
of this paper, the interested reader is directed to [23-25] for
details.

ACKNOWLEDGMENTS

The authors thank Hans Christian Ottinger for very help-
ful suggestions. M.K. acknowledges financial support
through Contracts No. NMP3-CT-2005-016375 and No.
FP6-2004-NMP-TI1-4-033339 of the European Community.
L VK. gratefully acknowledges support by BFE Project No.
100862 and by CCEM-CH.

APPENDIX A: NEWTON ITERATION

The analytical complexity of either the CE method or the
invariance equations is overwhelming when we regard sys-
tems other than the linearized Grad system, such as the Bolt-
zmann equation. Approximate solutions are, then, the only
feasible approach. In this section we shall describe the appli-
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FIG. 5. Dispersion relations w(k) for acoustic and diffusive
modes obtained via Newton iteration. In the plots, shown is also the
approximation obtained through Bobylev’s hyperbolic regulariza-
tion (HR) [13]. Newton iterations fail for k=k,.=0.3023.

cation of the Newton iteration method to the invariance
equations. We used Newton’s method, cf. Fig. 5, to solve
iteratively Egs. (1), taking, as the initial condition, the Euler
approximation (corresponding to a nondissipative hydrody-
namics: Ag="---=Z,=0), which leads, after the first iteration,
to the same result achievable, alternatively, through a tech-
nique of partial summation [7] of the CE expansion: essen-
tially, a sort of regularized Burnett approximation. It is seen
in Fig. 5 that Newton iterations converge rapidly to the exact
hydrodynamics in the domain of its validity, k=k,.

APPENDIX B: BOBYLEV’S HYPERBOLIC
REGULARIZATION

This appendix reviews a recent approach by Bobylev [13]
and establishes a connection to the second-order variant of
our approach. We use the original notation of Ref. [13] to
facilitate comparisons.

As was demonstrated in Ref. [13], after truncating the CE
expansion at the Burnett level, the (linearized) equation of
hydrodynamics takes the general form dx+i(By+£”B))x
+eAx+0(e%)=0, where x is the vector of hydrodynamics
variables [p,u,T] and the operators B, A, and B, refer, re-
spectively, to the Euler, Navier-Stokes, and Burnett level of
approximation. B=B+&>B, is a real nonsymmetric operator
for £ >0. When applied to the Grad’s system (1), these find-
ings are a special cases of Eq. (19) with Eq. (20) upon iden-
tifying B,=(-1)"I"Y, A=A, and A,=(-1)"R". The loss of
symmetry of the operator B was identified as the reason of
the instability occurring in the Burnett equations. In order to
cure this loss of symmetry, HR introduces a symmetric real
valued operatorR and defines a change of variables such that
z=x+¢&’Rx—or in our notation above, T=(1+¢&’R). Hence
the resulting equation of hydrodynamics attains the form z,
+i[By+&*(B,+RBy—ByR)|z+£Az+0(&%) =0, more generally
z=TMT"'z. The suggested regularization consists in writing
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T~! as a polynomial (Taylor) expansion in powers of £ and in
truncating it, as for T, at second order.

HR therefore provides a regularization which is exact up
to the orderN 2. The operator R has to be chosen in such a

way that B,=B;+[R,B,] is real and symmetric, where
[R,By]=RBy—ByR. 1t is instructive to consider the HR as
applied to the example of the 1D13M (1) which has origi-
nally been written, in matrix notation, as

S
0 k 0
Pk < k0 k
&I u, | = -1 2
T, 0 Zk 0
\ -
0 0 0
K 0 - =K
+ &2
7
0 K 0
6
0 0 0
4
0 K 0 P \
—& 3 Uy +0(8 )
T
0 0 K k

(B1)

Expression (B1) offers those first terms of Eq. (19) with Eq.
(20) for which the coefficients (ay=-4/3,...,z0==7/4) are
analytically known, cf. Table I for all values. Equation (B1)
can hence equivalently be formulated as M=gR® ;1
—&2IM)+0(&%). To apply the regularization procedure to the
system (1), one needs to make matrix B, symmetric (it cor-
responds to restoring the hyperbolicity of Euler equations,
through a transformation T,). Then, introducing a real-
valued, symmetric (diagonal) matrix R with diagonal ele-
ments a(k), b(k), and c(k) (which corresponds choosing a
diagonal NT), and imposing the symmetry of the resulting

operator B; (more generally, of TI"’T~!), the coefficients are
interrelated as follows [13]:

_ 2, o220
a(k)=b(k) + S, e(k)=b(k) = K. (B2)

Notice the transformation RyR is a special case of Eq. (21).
The resulting operator B, is given by

By =B, +[R,By] = B + b(k)[1,By] + [m;;,By] = By + [m;j,Bo],

(B3)

ij>

and therefore unique [independent of b(k)]. Hence the hydro-
dynamic equations resulting from HR as applied to 1D13M
attain the form
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2
0 ik(l + —kzsz)

Pr
2 4
Al u |=- ik<1+§k282> gk%

2 13
0 \/jik<1 + _k282>
3 24
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0
Pk
2 13
\/;ik<l + ﬁkz.&) u, | +0(%). (B4)
T
“k’e
2

Since Eq. (B4) is a special case of the more general Egs. (29) and (30), the connection to Bobylev’s work has been

explicitly established.
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